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ABSTRACT

The penetration of distributed energy resources (DER) is growing at much

higher rates than predicted 20 years ago. Far from being used only in residen-

tial settings, DER are now installed on distribution and transmission circuits.

In this position, they do not have the same properties as traditional genera-

tors and are more flexible in many cases. The growing penetration and range

of uses for DER motivate the need to reliably and safely integrate them into

the grid. Operators must be able to rely on them not only for normal oper-

ation, but also during abnormal conditions like black starts or adverse cyber

scenarios. To that end, we study the communications, device interfaces, and

potential consequences of DER operation under abnormal and adversarial

conditions. The weaknesses of communications networks are studied based

on the industrial protocols used, and the benefits of security features are ex-

amined. The device interfaces are found to be vulnerable to attack based on

the requirements in the IEEE-1547 standard for DER interconnection and

interoperability, which is expected to be adopted in the next ten years. In

addition to exploring the requirements of the standard, we show that these

vulnerabilities and others do exist and can be used maliciously in a mod-

ern storage system DER. Consequences of these vulnerabilities range from

exacerbated grid instability, to simultaneous loss of large portions of DER

penetration, to physical damage to inverters or DER themselves and other

sensitive equipment. We tie these outcomes to specific attacker actions in

an effort to give operators a better threat intelligence view that allows them

to prioritize mitigations. Finally, we discuss mitigations that could prevent

many of the adversarial scenarios described. Some solutions can be added

to existing infrastructure, while others may require longer term planning for

grid modernization with consideration for security.
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CHAPTER 1

INTRODUCTION

The United States is experiencing an energy revolution. Due to aging in-

frastructure, policy changes driven by climate change, shifting economics for

new technologies, and a recognized need for long-term sustainability, there

is a push towards using clean or carbon-neutral energy sources. On top of

that, growing electrification and rising load continue to put a strain on exist-

ing transmission and distribution infrastructure. While the energy landscape

of the future will require changes and technological advances across the in-

dustry, and may take one of many forms, it is clear that distributed energy

resources (DER), including solar, wind, and storage, will play a major role.

The energy industry is facing another type of revolutionary change on

top of the changes in power production, distribution, and consumption. As

new technologies are introduced to make grids smarter, more efficient, and

more sustainable, increased control, monitoring, and communication across

the power grid is required. However, each new meter, controller, and elec-

tronic safety device is a potential target for a cyber adversary. Historically,

cybersecurity was not a concern for power systems since they were largely

airgapped from any publicly accessible networks. That is no longer the case,

and even if appropriate protections are put in place to isolate industrial net-

works from commercial networks, a motivated and well-resourced adversary

may find ways to access sensitive networks or devices that provide critical

services.

While electric energy infrastructure may not be the first high-value target

people think about for cyberattacks, there has been a rise in cyberattacks

targeting industrial control systems (ICS) and a corresponding rise in attacks

targeting electric energy systems over the last several years. Dragos Inc. re-

ported in 2020 that threats to ICS are appearing at a rate three times that at

which they are going dormant [1]. The energy sector is a high-value target for

cyber adversaries because of the immediate and wide-reaching consequences
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that a successful attack could have. Large-scale blackouts have consequences

not just for our domestic lives, but also for vital health and financial systems

[2, 3]. The importance of protecting the power grid has also been identified

at a federal policy level. There are 16 critical infrastructure sectors, of which

energy is one. Presidential Policy Directive 21, which establishes national

policy on critical infrastructure security and resilience, identifies the energy

sector as uniquely significant since it provides an “enabling function” across

all critical infrastructure sectors [4].

There are a few of attacks on the energy sector worth noting. In Decem-

ber 2015, Russian hackers executed an attack on a Ukrainian distribution

company, disconnecting seven substations after infiltrating the supervisory

control and data acquisition (SCADA) network and causing blackouts for

over 200,000 customers [5]. The outages lasted only a few hours because

operators were able to restore a limited capability manual backup mode,

but they were noteworthy as the first publicly acknowledged cyberattacks to

result in power outages. Attacks occurred again 2016, this time with more

advanced, targeted malware, shutting off approximately 20% of Kiev’s power

[6, 7].

Shortly following these attacks was another that raised concern in the

industry, the Triton (or Trisis) malware. This malware was targeted to in-

terfere with the function of Triconex controllers, which are mostly used in

safety instrumented systems [8]. This malware was particularly noteworthy

because it targeted safety systems, making it clear that the intended out-

come was physical breaches of safety. While the particular device targeted

is mostly used in the oil and gas sector, similar devices are used widely

across the electric energy industry. Accenture and Dragos have not named

an attacker for this case, but propose that the advanced capabilities used

suggest a nation-state attacker [9, 10]. Over a year after the attack, FireEye

Intelligence released evidence that the source of the attack was a Russian

government-owned technical research institution.

While operation focused attacks may continue to be the most impactful

threat, ransomware attacks are rising in frequency and beginning to tar-

get industrial sectors. Traditionally, ransomware targets enterprise systems,

but attackers have learned that cyber-physical processes are good targets

too. Particularly in the electric energy industry, there is a need for constant

availability of systems. If ransomware can shut down resources critical for
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operation, companies may be more likely to pay the ransom immediately

rather than try to remove the ransomware on their own. The rise of ran-

somware targeting ICS has been noted by multiple sources [11, 12, 1]. In

fact, 33% of ICS companies surveyed by Kaspersky in 2018 indicated that

ransomware was one of the top three incidents they were concerned about for

their industrial control networks, and 30% indicated that ransomware was

a cause of ICS cybersecurity events that they experienced in the previous

twelve months [13]. In 2019, a ransomware attack on a natural gas compres-

sion facility forced operators to shut down operations for two days [14]. The

details of ransomware variant were not made public, but Dragos learned that

it was likely the Ryuk ransomware, a variant that was originally tied to the

North Korean Lazarus Group, but is now believed to be from a cybercriminal

group [15, 16]. This attack started with a spearphishing attack that allowed

the adversaries initial access into the system. This is a common starting

point for many attacks, and it points to the need for continued employee

cybersecurity training. Although the facility could still operate, there was

a lack of visibility into real-time and historical data, which made continued

operation unsafe. This fact raises a critical consideration: Cyberattacks do

not necessarily have to directly impact key processes in order to indirectly

shut those processes down.

Finally, and perhaps most noteworthy for this thesis, a cyberattack affect-

ing wind and solar plants in the U.S. occurred in 2019. A vulnerability in

the network firewalls was exploited to force the devices to reboot, causing

communication outages in five minute periods over a total of twelve hours

[17]. This attack did not cause any power outages or stop generation at the

DER sites, but it did block visibility into the system and interrupt the ability

to make operational changes. Notably, it is not believed that the unknown

hackers targeted the energy sector, and they may not have even known what

devices they were attacking [18]. This event underscores the vulnerability of

the grid to a wide range of attacks, not just nation-state actors, advanced

persistent threats (APTs), or financially motivated cybercriminals. If this

attack had targeted an entity making frequent active operational decisions,

the consequences could have been more severe.

Within the landscape of growing cybersecurity threats to the electric en-

ergy industry, the growth of DER presents certain challenges that have not

been well addressed. By their nature, DER are distributed, meaning that
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individual devices may be separated geographically, and at the least, the

devices are not concentrated in a single center the way a traditional power

plant is. To manage and monitor these distributed devices requires increased

communication, and particularly calls for increased remote communication

capabilities. This need is further increased by the fact that many DER may

be owned by consumers or third-party aggregators, requiring more coordi-

nation on both ends to successfully integrate DER. Remote communication

can be especially vulnerable to cyberattacks.

DER can also serve a wider variety of functions than most assets in the

power system. Rather than being limited by rotational mechanics, most DER

are inverter based, meaning they can ramp power up and down very rapidly,

and control active and reactive power separately, which makes them very

flexible. However, if these increased capabilities are maliciously used, the

benefits they provide to connected grids can quickly become big risk factors.

Due to the new and rapid technology development of DER and the risks

described above, there is a strong need to evaluate cybersecurity risks and

provide proactive prevention, detection, and mitigation solutions.

The rising use of DER presents unique challenges to ensure that power

grids are protected from cyberattacks. Cardenas et al. [19] suggest that

DER penetration is not yet high enough to pose a significant concern, but

if penetration continues to grow, the risks will need to be addressed. It

is critical that we address the cybersecurity risks of DER before they are so

widely deployed that the cybersecurity risks proposed pose significant danger.

Proactive research in DER cybersecurity is the only way we can develop the

technology, standards, and policies required to ensure that power and energy

infrastructure is well protected.

In this thesis, network and cyber-physical security for DER are analyzed

in two ways. In the first part of the thesis, we discuss the communication

and interoperability requirements for generic DER and how they can be ad-

versarially manipulated. The focus is on these cyber-physical interactions,

as they are unique for DER and require novel cybersecurity solutions. A

defense mechanism is proposed to stop these kinds of attacks before they

occur by inspecting incoming commands to the DER and evaluating their

safety given the current modes active on the device and the current system

measurements. In the second part of the thesis, we focus on storage de-

vices as DER. Storage devices by nature can inject and absorb power, which
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makes them more interesting to evaluate. Grid stability impacts, battery

hardware impacts, and economic impacts of cyberattacks on grid-scale stor-

age are presented. Finally, we present a case study of a real storage device in

a field-tested setup. A security analysis is performed on the communications

and command interface, and security properties that make the device more

robust against attacks are presented.

Although the need for cybersecurity for DER is growing, most research

in the field addresses potential attacks based on common network configura-

tions and DER capabilities. This thesis augments previous work by providing

a detailed analysis of the vulnerabilities of the IEEE 1547 standard rather

than generic functionalities, and by detailing specific impacts of cyberattacks

on DER across grid impact, device impact, and economic impact categories.

Novel work presented here also shows the feasibility of attacks and the ben-

efits from adding security features to communications protocols. Related

work has been done with hardware-in-the-loop simulations, but this work

studies cybersecurity on fully deployed hardware systems. While there has

been work in the broader areas of attack detection and of deep packet inspec-

tion, this work also provides a novel tool to detect attacks specific to DER

capabilities.

The rest of the thesis is organized as follows. In Chapter 2, we present back-

ground information for power and cybersecurity. In Chapter 3, we present

a security analysis of the IEEE 1547 standard. In Chapter 4, a deep packet

inspection tool is developed to mitigate the impacts found in the security

analysis. In Chapter 5, we focus on storage devices and analyze the con-

sequences of a successful attack for the grid, for the battery hardware, and

for utility and consumer economics. Finally, in Chapter 6 we analyze a case

study from the perspectives of communication protocol security and phys-

ical outcomes of a successful adversarial change to settings. In Chapter 7,

conclusions are presented.
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CHAPTER 2

BACKGROUND

Reliability and resiliency are major considerations for power systems, but

cybersecurity is still a relatively new consideration in the field. Much of

the existing work on cyberescurity with power applications focuses on the

bulk electric system or on customer-facing endpoints rather than generation

sources. DER present a unique challenge in the field because they are gener-

ation sources which, in aggregate, can have a significant impact on the grid.

However, they can also be owned by consumers, aggregators, or utilities, and

thus the security of such devices must be handled differently.

In particular, DER are more likely to require expanded communications

interfaces so that they can be operated correctly and send data to all in-

vested parties. The temporal rates, granularity, and content of the commu-

nications may change depending on the receiving party, both for operational

efficiency and security. This expanded communication interface creates more

opportunity for a dedicated adversary to infiltrate the system. Depending

on interoperabilty requirements, the DER may transmit data to or receive

commands from more than one party, which exposes multiple channels for

adversarial exploit. Additionally, the control requirements of DER to han-

dle variable energy sources, grid-support functions, and economic operation

means that an adversary may be able to use these controls to execute more

impactful attacks.

In this section, we discuss some of the unique challenges around securing

DER and how existing research can support this effort.

2.1 Defining DER

There is no standard definition for DER, either in terms of technology or size.

However, DER typically refers to smaller, geographically dispersed resources
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[20]. DER are typically thought of as distributed solar, wind, or storage

applications, although they can also include combined heat and power (CHP)

plants or even electric vehicles (EVs). In this work, DER refers to inverter-

based DER, and so CHP is out of scope. These generation sources can

be contrasted to the historical grid setup, where large centralized generation,

typically located further from densely populated areas, produces power. This

power is then sent to customers via high voltage transmission lines, and

distributed to consumers on lower voltage networks.

The National Association of Regulatory Utility Commissioners defines

DER as “a resource sited close to customers that can provide all or some

of their immediate electric and power needs and can also be used by the

system to either reduce demand (such as energy efficiency) or provide supply

to satisfy the energy, capacity, or ancillary service needs of the distribution

grid. The resources, if providing electricity or thermal energy, are small in

scale, connected to the distribution system, and close to load” [21]. This def-

inition speaks to some of the key characteristics of DER that are discussed

from a cybersecurity perspective. Namely, the ability to provide ancillary

services to the grid and support local load are key benefits of DER, which,

if manipulated by a cyber adversary, can have wide-reaching impact.

The Electric Power Research Institute (EPRI) has a more quantitative def-

inition of DER: “Distributed Energy Resources (DER) are electricity supply

sources that fulfill the first criterion, and one of the second, third or fourth

criteria:

1. Interconnected to the electric grid, in an approved manner, at or below

IEEE medium voltage (69 kV).

2. Generate electricity using any primary fuel source.

3. Store energy and can supply electricity to the grid from that reservoir.

4. Involve load changes undertaken by end-use (retail) customers specifi-

cally in response to price or other inducements or arrangements” [22].

DER may be configured in many ways. It may be a single solar panel

or wind turbine used for education and research at a university. It may be

consumer rooftop solar. It could be an industrial scale combined storage

and solar system to offset power consumed at a manufacturing plant or data
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center. It could be small wind or solar farms integrated at the distribution

level for utilities. These examples are mentioned to demonstrate the range

of applications. From an architecture standpoint, the takeaway is that DER

may be installed individually, groups of DER may be managed by an aggre-

gator, or they may be directly managed by a utility. Even different types of

physically separated DER can be jointly managed as a virtual power plant.

2.2 Grid Support and Ancillary Services

Modern DER can be used to provide many critical services. These can be

broken down by services or functionalities that must be specifically built

into the DER design, and services that the DER can provide by the nature

of distributed generation.

Functionalities that DER are designed to provide include the following, as

identified by Sadan and Renz [23]:

• Volt-VAR support: Reactive power output is a dynamic response to

changes in local voltage. Typically, when voltage is low, reactive power

is injected to drive voltage up towards nominal, and when voltage is

high, reactive power is absorbed to drive voltage down towards nominal.

• Frequency-Watt support: Active power output is a dynamic re-

sponse to changes in frequency. Typically, when frequency is low, active

power is injected, and when frequency is high, active power is absorbed.

• Voltage ride-through: The sudden disconnect of generation sources

in response to small voltage deviations can cause cascading failures.

To prevent this, DER may be required to “ride through” the voltage

deviations. This means that they must stay connected during the dis-

turbances for a certain amount of time to try to help the system return

to stability. If after a certain time, the unstable conditions still persist,

the DER should trip off.

• Frequency ride-through: Similar to voltage ride-through, frequency

ride-through requires that DER stay connected for a period of time

when frequency deviations occur. If the deviation persists after a period
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of time, the DER should disconnect from the system, an action known

as tripping off.

• Intelligent Volt-Watt control: Active power is adjusted based on

the current voltage. While this typically has less of an effect than Volt-

VAR mode, it can still be a useful tool, especially when there is more

control over active power output.

• Storage system charge and discharge management: The ramp

up and ramp down rates for storage systems can be limited so there are

not sudden changes. It may also require that the storage device main-

tain a certain state-of-charge to protect the battery and equipment.

• DER protection: island detection and grid-disconnect: Due to

the distributed nature of DER, a fault that disconnects part of the grid

may cause DER to energize local parts of the system that should be

de-energized after the fault. DER should detect if they have formed an

unintentional island and should disconnect.

• Grid-form on an intentional island: DER should not energize parts

of the system if it is not pre-scheduled, but they may be part of an

intentional island or microgrid. They may even be a primary source

for this island. In this mode, the output of the DER should be adjusted

to maintain voltage and frequency at particular setpoints.

• Max generation limiting: In some setups, DER should not export

energy to their grid and should not back feed energy. Output may need

to be limited (often called curtailing) to meet this requirement.

• DER load balancing: DER output may need to dynamically respond

to changing load. As load comes online, DER should increase their

power output. If loads drop off, DER should decrease their power

output.

By the nature of acting as distributed generation sources, DER can provide

transmission congestion relief and microgrid or islanding support. They can

serve local load, preventing a utility from having to supply as much load.

Cyberattacks can interfere with any of these critical services, and the im-

pacts of such attacks are described in detail in Chapter 5.
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2.3 IEEE 1547-2018 Standard

The previous section discussed some generic features and services that DER

can provide. This thesis does significant analysis of the IEEE 1547 standard,

which sets requirements around many of these functions and the communi-

cations required to support these functions. Some background and history

is provided here, and the details necessary for the security analysis are ex-

plained in Chapter 3.

The IEEE 1547 standard was originally published in 2003. At the time,

DER penetration was low, so the standard required DER to trip off (discon-

nect from the connected system) in response to even minor disturbances, so

operators would not have to worry about these emerging technologies when

handling disturbances. They did not consider continuous DER operation

important to the grid [24]. Since then, DER have grown at much faster rates

than expected. Policy makers across the United States and around the world

have set aggressive goals for clean energy or carbon-neutral energy produc-

tion. California is targeting 50% clean renewable energy by 2030, Hawaii

is targeting 100% clean energy by 2045, and New York is targeting 70%

renewable energy by 2030 [25, 26, 27]. In fact, as of 2020, 30 states have

renewable portfolio standards, and of these, 22 specifically set targets for

distributed generation or solar [28]. Clean and renewable energy can come

from a variety of sources including nuclear, geothermal, or hydro. Bulk solar

and bulk wind will also contribute. On top of contributions from all of these

sources, DER like distributed wind, distributed solar, and grid-scale storage

will undoubtedly play a role in meeting renewable portfolio standards.

With the current and projected growth of DER, the 2003 recommendation

for DER to trip immediately is no longer the best recommendation. In

systems with high penetration of DER, the simultaneous tripping of the

DER would likely make any disturbances worse. The new standard requires

that DER provide reactive power support, ride through disturbances, and

only trip off after certain thresholds are reached.
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2.4 Communication Interfaces

In order to support the grid functions most efficiently, DER connected to dis-

tribution systems are required to communicate with the utility. IEEE 1547,

California Rule 21, and Hawaii Rule 14H all require that grid-connected DER

provide frequency and voltage ride-through function, Volt-VAR support, and

some mix of other grid support functions [29, 30, 31]. In order to effectively

perform these functions, communications with the utility are required. The

utility must instruct the DER how much reactive power support to provide in

response to voltage deviations based on the rest of the system configuration.

Similarly, the utility must assess the rest of the system to determine how long

DER should ride through disturbances. In systems with high DER penetra-

tion, the sudden loss of high amounts of generation will be more damaging,

so those DER will require longer ride-through settings. Long term and con-

tinuously available communication infrastructure is required because these

settings may need to change based on dynamic operation of the grid; for

example, they may change based on what other generation sources are cur-

rently online or what the current load level is. Additionally, communications

with an aggregator, if one exists, are mandatory. The owner of the DER

may be separate from both the utility and the aggregator, and in this case

communications including control, health monitoring, or performance mon-

itoring may also be required. All of these increased capabilities for DER,

driven by policy and technology, will require increased communications and

communications infrastructure to safely operate power systems [32].

These communications will all have to use network protocols. IEEE 1547

specifically calls out DNP3, SEP2, and Sunspec Modbus as being options

for communications with DER, but other protocols are possible [33, 34, 35].

Historically, protocols used in power system networks were designed with

latency and performance as key factors, and as a result, the protocols used

were largely unsecured [36]. While latency is still a huge concern, security is

now being factored into decisions about communications too [37, 38, 39]. It

is worth noting that not all communications have the same latency require-

ments. Safety-critical messages, for example those used for communications-

based islanding detection, require very low communications latency. Others,

like changing setpoints on a Volt-VAR curve, may not be as time sensi-

tive. However, to ensure all requirements are met, most infrastructure is still
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built to satisfy the most constrained latency requirements. Other research

discusses network security for DER in detail and provides key recommenda-

tions that align with general cybersecurity best practices [40]. In this work,

we evaluate with real power and communications hardware what benefits can

be provided by using a protocol with more security features (see Chapter 6).

An additional characteristic of DER communications is the need for re-

mote communication. Unlike centralized power plants, the DER under a

utility’s domain may be geographically separated and difficult to access. Re-

mote access via cellular or wireless links has been touted as a feature of new

technologies, but remote connections pose a particular danger from a cyber-

security perspective. If these links are not well secured, it may be simple

for an attacker to spoof messages to or from a DER device remotely. Most

communications will take place over private channels, whether this is physi-

cally private connections, dedicated telephone company circuits, or a virtual

private network (VPN). This is not universally the case though. More and

more devices require communications over the internet. Suppliers say this

gives them the ability to monitor device health and perform preventative

maintenance. Many suppliers also have custom applications that customers

can log in to to access their device’s data. Any traffic sent over the internet

should be treated with caution. Research has demonstrated the potential for

this attack, with many smart grid components identified via Shodan [41].

2.5 Safe and Secure Grid Operation

The ultimate goal of integrating DER into the grid is to make the grid more

resilient and reliable, and to ensure continued safe and secure delivery of elec-

tric energy to end-users. These terms can mean different things in different

contexts, so we define important terms as they are used in this thesis.

2.5.1 Reliability

According to the North American Electric Reliability Corporation (NERC),

reliable operation means “operating the elements of the [Bulk-Power System]

within equipment and electric system thermal, voltage, and stability limits so

that instability, uncontrolled separation, or cascading failures of such system
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will not occur as a result of a sudden disturbance, including a cybersecurity

incident, or unanticipated failure of system elements” [42]. It is important to

note here that this definition talks about uncontrolled separation, cascading

failures, and sudden disturbances. This is not equivalent to keeping power

on for all customers at all times.

2.5.2 Resiliency

According to Presidential Policy Directive 21 (PPD21), resiliency means “the

ability to prepare for and adapt to changing conditions and withstand and

recover rapidly from disruptions. Resilience includes the ability to withstand

and recover from deliberate attacks, accidents, or naturally occurring threats

or incidents” [4]. Many organizations use similar definitions. Resiliency is

often thought of as robustness against “high impact, low probability” events.

This differs from reliability, which is considered as robustness against “low

impact, high probability” events. This term also speaks more to the goal of

keeping power on for all customers as much as possible.

2.5.3 Security

PPD21 defines security as “reducing the risk to critical infrastructure by

physical means or defense cyber measures to intrusions, attacks, or the ef-

fects of natural or manmade disasters” [4]. The important aspects here are

the concepts of risk assessment, prioritizing risk, and mitigating risk. Cyber-

security is not explicitly called out, but this definition of security can easily

be applied to cybersecurity.
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CHAPTER 3

SECURITY ANALYSIS OF THE IEEE 1547
STANDARD

3.1 Introduction to IEEE 1547 Standard

The IEEE 1547 standard governs the interconnection between DER and the

area electric power system (AEPS) and sets interoperabilty standards. It

specifies operational requirements around reactive power capabilities, ride-

through requirements, and mandatory tripping points. It also defines the

communications interface required to support these functions [29]. The lat-

est version, published in 2018, significantly increases the requirements for

DER to provide certain supporting services and to ride through certain dis-

turbances. With these increased capabilities, particularly the specific com-

munications requirements set to enable more services, comes increased cyber-

security risks. We analyzed the requirements of the new standard and found

that certain combinations of settings, while compliant with the standard,

have the potential to create instability on the DER circuit and connected

system.1 The standard was updated specifically to increase stability, so the

threat of a cyberattack causing instability is particularly noteworthy.

While the main part of the IEEE 1547 standard talks only about oper-

ational and communications requirements, the committee has not ignored

cybersecurity. The latest version IEEE 1547.3 standard is not yet published,

1The material in this chapter is based upon work supported by the Department of
Energy under Award Number DE-OE0000896. Disclaimer: This report was prepared as
an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.
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but it will address best practices for DER cybersecurity. The revised IEEE

1547.3 standard is expected to address best practices around setting up se-

cure communications channels and securing devices. The work reported be-

low complements these recommendations by considering an adversary who

creates combinations of settings that are standard-compliant but potentially

destabilizing.

We present five use cases that demonstrate the potential for malicious

mode and setpoint combinations, and one for false data injection.

3.2 IEEE 1547 Active and Reactive Power Modes

The IEEE 1547 standard specifies the way in which active and reactive power

output will be chosen based on different modes for active and reactive power.

Understanding these modes is critical to crafting an attack that takes advan-

tage of the capabilities.

The reactive power modes are:

1. Constant Power Factor Mode: The AEPS sets a ratio of active to reac-

tive power, known as the power factor, that the DER must maintain.

2. Voltage Reactive Power Mode (Volt-VAR): The AEPS can designate

a Volt-VAR support curve that changes the amount of reactive power

output based on the measured voltage at the point of common coupling

(PCC). Typically, this curve specifies that reactive power is injected

when voltage is low and absorbed when voltage is high, both operations

which will drive local voltage back towards nominal. A typical Volt-

VAR curve is shown in Figure 3.1.

3. Active Power-Reactive Power Mode (Watt-VAR): The AEPS can des-

ignate a curve that changes the amount of reactive power output based

on the current active power output. The default Watt-VAR curve is

shown in Figure 3.2.

4. Constant Reactive Power Mode: The AEPS can designate a constant

reactive power output (injection or absorption) while the mode is ac-

tive.
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One and only one of the reactive power modes must be enabled at all times;

they cannot be enabled simultaneously.

Figure 3.1: Default Volt-VAR curve as specified by IEEE 1547.

Figure 3.2: Default Watt-VAR curve as specified by IEEE 1547.

There is also a single active power mode called Voltage-Active Power mode

(Volt-Watt). If this mode is enabled, the active power output is governed

based on the current voltage, and the exact output is determined by a Volt-

Watt curve. The default settings for this curve are shown in Figure 3.3.

Volt-Watt mode can be enabled or disabled in combination with whichever

reactive power mode is active.
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Figure 3.3: Default Volt-Watt curve as specified by IEEE 1547.

3.3 Threat Model

To perform the security analysis, we must first qualify the parameters of the

attacks that we consider. In this analysis, we assume that the attacker has the

ability to send correctly formatted, valid (via authentication or basic source

spoofing) commands to the DER. This could happen via a compromised

utility or command center, or the attacker could break protocol security and

spoof a valid source.

We assume that the attacker is constrained to valid messages, or that

the implementation will reject messages that are not compliant with IEEE

1547. Another way to say this is that we do not consider implementation

vulnerabilities of the standard.

The security analysis considers the cyber-physical impacts of different po-

tentially malicious commands that the attacker may send.

3.4 System Model for Use Cases

For the purposes of analyzing the standard and creating simple models to

demonstrate the feasibility of these attacks, we use a very simple system

model adapted from the author’s publication [43], shown in Figure 3.4. This

system consists of two DER circuits connected to a larger AEPS with two in-

dividual PCCs. Each DER circuit consists of a variable load and an inverter-
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controlled energy storage system (ESS) that is capable of generating and

absorbing both active and reactive power. The analysis we perform is valid

for circuits more complex than our single ESS model, but we make this sim-

plification so that we can assume the DER circuit can inject and absorb both

active and reactive power. The single ESS in the model may represent mul-

tiple different DER generation sources and local loads. Although the ESS is

chosen to allow for a wider range of potential attacks, we keep the security

analysis focused on generic DER as much as possible.

The power infrastructure and network infrastructure is shown here. The

commands are sent from the Energy Management System (EMS) through

the SCADA system to the ESS controller. Each PCC is equipped with a

network switch that processes the incoming command from the ESS. The

command is forwarded to the ESS controller.

Figure 3.4: Simplified model for IEEE 1547 Analysis, adapted from [43].

For this analysis, we assume that the DER is connected to a medium-

voltage AEPS, modeled as a single, limited capacity, synchronous generator

and a variable load for the purposes of this model. We also assume that

these DER circuits represent a large portion the AEPS capacity, while in

practice it may be that many DER in aggregate form a significant portion of

the AEPS capacity.

For each DER circuit, a controller such as e-meshTM SCADA [44] acts as

the substation remote terminal unit (RTU) for all the communications on
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the DER circuit. It also acts as a gateway that meets the requirements for

the DER communication interface in the standard.

The circuit breaker connected to the AEPS is considered to be the island

breaker. It is in the open position while either one or both of the PCCs are

in a closed position to simulate intentional or unintentional islanding.

We make the assumption that the attacker can access the IEEE 1547 com-

pliant communication interface between the AEPS and the DER, but does

not necessarily have visibility into the rest of the system, the details of which

are not included in our model.

3.5 Use Cases

The following are results from our security impacts analysis of the IEEE 1547

standard. Each use case describes in detail the commands an attacker would

have to send, the system states that make the system most vulnerable, and

the cyber-physical impacts of a successful attack.

3.5.1 Use Case 1: Malicious Changes to Volt-VAR Mode

In this scenario, the attacker changes the setpoints of the Volt-VAR support

curve. This is a simple attack proposed for DER since the Volt-VAR func-

tionality is one of the most basic functions a DER can have. The attacker

modifies the curve in such a way that the DER is highly sensitive to changes

in voltage and responds to voltage deviations with destabilizing behavior.

This attack can be combined with conservative voltage tripping settings to

cause DER to trip rapidly in response to conditions that they would normally

have been able to ride through.

We assume that the attacker knows some basic information about the

system topology and may use this information to infer what will be the most

damaging Volt-VAR curve to set. This is not a strict requirement for the

attack to be successful, but it will help make it most effective.

A default Volt-VAR curve was shown in Figure 3.1. However, there are

large ranges for the reactive power and voltage setpoints allowed by the IEEE

1547 standard, allowing for operators to pick the best voltage support curves
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for their system. The standard even warns that improper selection of these

values may cause instability, but the options are still there.

Figure 3.5: Use Case 1: Inverse Volt-VAR curve.

Figure 3.5 shows an example of a malicious curve that is within the allowed

bounds of IEEE 1547. In this scenario, a small deviation from nominal volt-

age would cause rapid injection or absorption of reactive power. Additionally,

a drop in voltage will cause reactive power to be absorbed, which will further

decrease the voltage. If the attacker also sets the undervoltage tripping re-

quirements to be conservative, for example a clearing time of 2.0 s when the

voltage is 0.88 p.u., then once the DER PCC voltage crosses the threshold of

0.88 p.u., a timer starts. At this point, reactive power is still being absorbed,

potentially driving the voltage down even lower. After two seconds, the DER

must trip, and the AEPS loses this DER as a generation source. The same

type of analysis holds for an overvoltage scenario.

There are other possible settings that could create similar destabilizing

effects, for example, always injecting maximum reactive power allowed in

response to any voltage to drive the voltage up. Conversely, absorbing maxi-

mum reactive power allowed in response to any voltage may drive the voltage

down.
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Potential Mitigations

A sanity check of the setpoints at fixed time intervals could potentially catch

any malicious settings. It may also be possible to catch the attack before

it happens by using a packet analyzer of network traffic to detect unusual

setpoint changes before they reach the DER interface. See Chapter 4 for

more details about this mitigation strategy.

3.5.2 Use Case 2: Malicious Changes of Constant VAR Mode

In this scenario, the adversary sets the reactive power mode to Constant Re-

active Power and tries to drive voltage up or down in order to reach tripping

limits and force a disconnect from the AEPS. Unlike Use Case 1, the attacker

actively chooses the precise reactive power output rather than allowing the

system to respond dynamically to the voltage. It gives the adversary more

precise control over the DER output, but requires more active interaction

and monitoring by the adversary. We assume that the adversary has some

visibility into real-time measurements. This is not strictly necessary, but will

help the attacker choose the most effective attack.

The most obvious choices for the attacker would be maximum rated reac-

tive power injection or maximum rated reactive power absorption. Maximum

injection is most likely to drive the voltage up, and maximum absorption is

more likely to drive the voltage down. Some systems may require constant

reactive power injection near the end of distribution feeders anyway, since

voltage tends to droop as it travels over longer distances. Knowledge of sys-

tem topology and current behavior of the DER will help the adversary choose

an output that is most likely to cause instability.

The advantage of this Use Case over Use Case 1 from the adversary’s

perspective is that the reactive power output is not dependent on the voltage.

The adversary may choose 100% reactive power injection, and the system will

continue to provide that even as the voltage passes critical points. Also, this

mode allows the attacker to choose a desired output regardless of fluctuations

in the voltage.

The disadvantage of this attack compared to Use Case 1 from the adver-

sary’s perspective is that it may require more active monitoring. In Use Case

1, the adversary can change the Volt-VAR setpoints and leave them. Here,
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the attacker must know and choose the setpoint that will most effectively

disrupt the system. Another disadvantage is that Use Case 2 may be more

likely to be detected than Use Case 1. System operators may be more likely

to trust that Volt-VAR support is occurring as expected, and may not ini-

tially suspect that this mode is corrupted. However, it would seem more

natural to notice that if Constant Reactive Power mode is active and operat-

ing at a bad setpoint. This is predicated on the idea that someone is actively

monitoring the DER mode, which would depend heavily on how the DER

were deployed.

3.5.3 Use Case 3: Malicious Changes to Volt-Watt Mode

In this scenario, the attacker changes the setpoint of the Volt-Watt mode

regulating active power output. We assume that the AEPS is operating at

low load, and the voltage at the PCC may be trending on the high side of

normal bounds. Namely, this means that with Volt-Watt mode enabled, the

DER circuit is absorbing maximum rated active power.

The attacker maliciously modifies the points of the Volt-Watt curve (see

Figure 3.3) so that that at V2, the active power is 0, P ′
2 = 0, which is the

maximum allowed setpoint for DER that are capable of absorbing power.

The DER circuit changes from absorbing maximum rated active power to

zero active power output. The AEPS sees this as a drop in load equivalent

to the rated active power capacity of the DER circuit. The change may cause

the high voltage to rise even higher, potentially forcing tripping conditions.

3.5.4 Use Case 4: Introduction of Contradictory Modes

We assume that the operation point at the beginning of the attack is one

where the DER is operating as a generation source, injecting both active and

reactive power into the AEPS. To execute the attack, the adversary ensures

that Volt-Watt mode is enabled by checking the current settings and sending

a command to enable this mode if it is not currently on. This ensures that the

active power output is at rated maximum injection if the voltage is at or below

nominal levels. Then, the adversary sends a command to change the reactive

power mode to Watt-VAR modes. Since we already know active power output
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is at maximum injection, reactive power output will be determined by this

active power output, which according to the default curve will be maximum

rated reactive power absorption. See Figure 3.6 for a visualization of the

change in operating points.

Figure 3.6: Use Case 4: Change in operating point, adapted from [43].

The change from high reactive power injection to high reactive power ab-

sorption causes a decrease in local voltage. However, because the Volt-Watt

curve specifies continued injection of maximum rated active power as the

voltage drops, the reactive power output will also remain at maximum ab-

sorption.

The effect of this change in operating point will depend on the penetra-

tion of DER into the system. If this attack is carried out against all DER

in the system, and collectively they represent a significant proportion of the

total generation capacity, then the remainder of the AEPS may not be able

to counteract the voltage drop and breakers may trip. However, if the af-

fected DER collectively represent a small portion of the AEPS capacity, then

the effect of their misbehavior will be less significant. Extensive work was

performed by the author’s colleagues on this project to determine the exact

penetration of DER on which this attack would have to be carried out in

order for the system to collapse [43].

3.5.5 Use Case 5: Permissive Tripping Settings

In this scenario, the attacker selects very permissive tripping requirements so

that when grid disturbance events occur, up to and including unintentional
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islands forming, the DER does not respond as quickly as it should. This is

similar to setting ride-through periods to their maximum limit. The permis-

sive tripping settings that the adversary chooses are those that are farthest

away from nominal values and have the longest tripping times. The DER

stays connected (rides through) longer than it should.

This is particularly damaging in the case that an unintentional island has

formed. When intentional islands form, whether scheduled or unscheduled,

the equipment within the island boundaries has all been rated and approved

to be part of the island. However, when an unintentional island forms, it

may include part of the AEPS that was not approved to be part of an island.

It may only expect to transfer unidirectionally, and the unintentional island

may cause some devices, like transformers, to be back energized, which causes

costly damage and safety hazards.

This attack will be most effective when passive islanding detection schemes

are used because these methods rely solely on local measurements, as opposed

to active detection or communication-based detection. Active detection uses

perturbations that cause voltage or frequency to drift away from nominal

until a tripping setpoint is reached [45, 46]. Communication-based detection

like Direct Transfer Trip and Phase Comparison rely on coordination and

messages sent via the SCADA system from the point where the island was

formed [47, 48]. Depending on how the system is configured, there may be

separate “islanding detection setpoints” that are separate from the manda-

tory IEEE 1547 tripping requirements. However, if a simple passive detection

scheme is used, it would not make sense to have these be different values.

It is worth noting that failing to quickly detect unintentional islands is

not the only consequence of the permissive tripping settings, but it is the

most extreme scenario. Other grid disturbance events that do not create

unintentional islands could still cause equipment damage under this attack.

It is also worth noting that if the tripping requirements on the DER are

already fairly permissive, or if the system is robust to changes in voltage and

frequency, then this attack may not have the desired effect. Attack success

does rely on an external event happening rather than the adversary triggering

an event at a particular time. The effects may still be destabilizing, especially

in a system with high DER penetration that all experience the same attack.

24



3.5.6 Use Case 6: Changing Reported State-of-Charge

One of the communication requirements of the IEEE 1547 standard is that

the AEPS can access all of the real-time monitoring information from the

DER circuit. In this scenario, the attacker maliciously falsifies some or all

of the monitoring information from the DER circuit before it reaches the

AEPS. For the scenario discussed here, the DER circuit is assumed to include

a storage unit in the form of one or more rechargeable batteries, and the

information falsified is the reported state-of-charge.

We make the assumption that the AEPS operator uses the real-time mon-

itoring information to make operational decisions, and thus falsifying this

information will have an effect on the decisions made. For this scenario, we

assume that the DER circuit is operating in Volt-Watt mode, following the

curve in Figure 3.3. If the system is not already in this state, the adversary

can send a command to activate this mode.

The SOC of the DER circuit is one of the monitoring information data

points available, if applicable to the DER circuit. The attacker maliciously

changes the operational SOC data to 100%, when in fact it is at 20%. We

note that the standard specifies that the DER circuit shall not be required to

reduce active power below the level needed to support local loads, which are

assumed to be 20% of the total nameplate rating of the DER circuit. In order

to keep the adversarial changes within the scope of valid 1547 operations, the

adversary cannot require the DER to lower its active power output below this

amount if the DER are being used to support local load. Since in Volt-Watt

mode, the DER circuit is required to supply rated active power to the AEPS,

the DER circuit will not be able to support its local loads, or it will break

its contractual agreement to the AEPS. This can cause local load shedding

in the DER circuit along with possible frequency instability at the PCC.

Potential Mitigations

Encrypting communications can make it more difficult for an adversary to

execute a false data injection (FDI) attack. If encryption is used, the adver-

sary would have to break the encryption or steal credentials from somewhere

they are stored.

On the cyber-physical side, the AEPS operator can infer the operational
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state-of-charge (SOC) using frequency and active power measurements at the

PCC to independently track the expected SOC and raise alerts if discrepan-

cies are observed.

3.6 Related Work

Work in the last five years has grown around cybersecurity specifically for

DER, but there are still few publications on the topic. Sebastian and Hahn

discuss DER interconnection standards and smart inverter functions in de-

tail, then discuss the potential attack surface using communication networks

and attacking smart inverter functions [49]. They propose metrics to evalu-

ate the impact of attacks. Other research presents network attacks on DER

in more detail and provides recommendations that align with standard best

practices for cybersecurity are discussed with application to DER [50]. Addi-

tional threat assessment work proposes a framework to evaluate the current

security position and help stakeholders ensure that they have covered all

basic cybersecurity best practices via standards, certifications, and testing

against an individual system [51].
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CHAPTER 4

MITIGATIONS

In this chapter, a specific mitigation strategy is proposed to prevent cyber-

physical attacks on DER by detecting incoming commands that are malicious

and blocking them before they ever reach the controller.1 Since the focus of

the thesis is on cyber-physical effects of cyberattacks, this mitigation tool fo-

cuses on cyber-physical defenses. There are many existing works that discuss

how to detect attacks based solely on the cyber information in packet head-

ers. This chapter instead focuses on application-aware mitigation practices

unique to the attacks proposed in Chapter 3.

4.1 Deep Packet Inspection Tool

Many of the attacks described in Chapter 3 involve updating parameters on

the DER communications interface which, given the context of the system

and the current operating mode, can be labeled as potentially destabilizing.

This is not to say that the limits in the IEEE 1547 standard are poorly

designed. They are built to be flexible for different systems that use different

DER technologies in different applications. Rather, given some information

about the current operating state and other system values, the adversary can

choose a combination of settings that can destabilize the system.

The mitigation of this kind of command spoofing attack lends itself to deep

packet inspection (DPI), a technique by which one can inspect the body of

incoming communication packets to the DER controller and determine if

their contents are acceptable. This differs from stateful packet inspection,

which only looks at the headers of a packet.

1The material in this chapter is based upon work supported by the Department of
Energy under Award Number DE-OE0000896.
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4.2 DPI Tool Development

The purpose of this tool is to demonstrate that it is possible to prevent dan-

gerous commands from ever reaching the DER controller by performing deep

packet inspection. Because the decision to forward or drop the incoming com-

mand is made solely based on the contents of the packet and current state

information, the decision was made to keep the tool protocol-agnostic. IEEE

1547 specifically calls out Sunspec Modbus and DNP3 for communications.

The Conformance Test Procedures (IEEE 1547.1) also provide a reference

mapping to IEC 61850 [52, 53]. However, since no commercial products are

yet IEEE 1547-2018 certified, there are no existing encoders or decoders. By

keeping the tool protocol agnostic, we avoid making decisions about imple-

mentation that might not hold true for all implementations. More impor-

tantly, we make it clear that attacks on the communication protocol are out

of scope.

The tool effectively monitors incoming commands, then uses state informa-

tion and current configuration information from the DER to decide whether

the command should be forwarded or dropped. The decision is made based

on a series of rules. If the command passes all of the checks, it is forwarded.

If it fails some check, it is dropped and an alert is generated for the operator.

The DPI tool takes in commands that change the management information

of a DER. It polls a file or server that has the most recent status of the DER

and the state information at the PCC, like voltage and frequency. This can be

static information, or can be linked to Simulink model running in real time,

which publishes the current information or save it to a file. The DPI tool

then executes a series of checks against the rules. If the incoming command

violates any rule, an error message is displayed to the user interface.

In the current state of development, the packet is not forwarded even if

all of the rules are passed. There is work in progress to link the DPI back

to the Simulink model to see the effects of accepting or rejecting a packet.

Namely, we wish to demonstrate three cases: 1) stable operation when a valid

command is accepted and received by the DER, 2) stable operation when an

invalid command is rejected, and 3) unstable operation when the DPI tool

is turned off and an invalid command is received by the DER.
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(a) Valid Volt-VAR
Curve 1

(b) Valid Volt-VAR
Curve 2

(c) Valid Volt-VAR
Curve 3

(d) Invalid Volt-VAR
Curve 1

(e) Invalid Volt-VAR
Curve 2

(f) Invalid Volt-VAR
Curve 3

Figure 4.1: Examples of DPI used to detect valid and invalid Volt-VAR
curves.

4.2.1 Volt-VAR Detection

We use the engineering controls adapted from [54] to prevent potentially

harmful Volt-VAR curves from being set by an adversary. The determination

of the boundaries for allowed and disallowed points is made by the placement

of Vref and the zero reactive power line, where Vref is the reference voltage.

Points that are below Vref and below zero reactive power suggest absorbing

power in low voltage scenarios, which is dangerous and should be rejected.

Points that are above Vref and above zero reactive power suggest injecting

reactive power in high voltage scenarios, which should also be rejected.

Figure 4.1 shows the results from sending multiple commands with different

Volt-VAR setpoints. For visual ease, the proposed curve is plotted and the

regions of valid and invalid points are marked. The DPI tool accepts all

of the commands with points only in the valid region (second and fourth

quadrants) and rejects all commands with at least one point in the invalid

region (first and third quadrants).
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4.2.2 Contradictory Mode Detection

Use Case 4, the enabling of contradictory modes described in Section 3.6, is

a difficult one to protect against using heuristics only, but we attempt to do

so here. We assume that some amount of static system knowledge could be

programmed into the DPI tool, such as the overall penetration of DER in

the connected system.

We first examine a few prerequisites for this particular attack:

• The Volt-Watt mode should be on, or the command should be request-

ing to turn the Volt-Watt mode on, or the system should already be

injecting high amounts of active power.

• The command should be requesting to turn the Watt-VAR mode on.

• The current voltage should be less than the minimum voltage setpoint

given in the Volt-Watt parameters. This ensures that the system is

operating at maximum active power injection.

• The Watt-VAR curve parameters should be such that for maximum

active power injection, there is reactive power absorption higher than

a certain threshold that is chosen based on the known system DER

penetration levels. For example, this attack is deemed irrecoverable

with maximum reactive power absorption for DER penetration levels

of 48% or higher [43].

This attack is most effective if the starting operating point of the attack

is such that the DER is injecting maximum reactive power. This implies

that the connected system is relying on the DER to provide this reactive

power input and keep the voltage stable. Losing this support, and in fact

having the DER start absorbing reactive power, can be destabilizing for even

lower penetrations of DER. Examining the starting point of the attack is an

optional rule that could be added to the detection of this attack with the

DPI tool.

If all of the criteria described are met, an alert is raised and the packet is

dropped. If one criterion is not met, then the command will be allowed to

pass. If the rules for this attack are not well-tuned for the system, it may be

possible to get false positives or false negatives.
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4.2.3 Limiting Power Factor

Limiting the power factor is another engineering control proposed in [54] that

we implement here. Similar to some of the use cases proposed in Chapter 3,

malicious control of the power factor was shown to drive the voltage up by

injection reactive power. By monitoring the current reactive power, the DPI

tool can decide if a high power factor should be allowed or not. Specifically, if

the DER is already outputting at high reactive power, the power factor should

be curtailed. The cutoff proposed by Johnson et al. [54] and implemented

in the current version of the tool suggests that if reactive power is above

50% of nameplate capacity, the power factor should be limited by a cutoff

value. It is possible, and potentially valuable, to have this be a sliding scale

rather than a strict cutoff. For example, at 50% reactive power output, power

factors greater that 0.7 should be rejected, and at 70% reactive power output,

power factors greater than 0.55 should be rejected.

4.2.4 Tightening Ride-Through Parameters

In many of the use cases described, tight ride-through and tripping parame-

ters had the potential to increase the impact of an attack. Additionally, these

are not parameters that would be expected to change often. Thus, a com-

mand that reduces the deviation from nominal levels (voltage or frequency),

or that decreases the amount of time that a ride through should last before

a device trips, is a potential warning sign of an attack. The command on its

own does not guarantee that an attack is in progress, but it should still be

treated as suspicious.

As it stands, the DPI tool does not reject this command, but sends a

special warning message to the user. In the future, this could be developed

into a “threat threshold,” where commands are monitored over a period of

time. Each suspicious command that is sent during this time may have a

threat score, and when the aggregated threat score crosses a pre-determined

threshold, the operator will receive a high-priority alert and future suspicious

commands will be blocked. The aggregate threat score could be computed

across many distributed devices in order to better detect an attack that

targets multiple DER, thus increasing the chance for a higher impact event

if an attack occurs.
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4.2.5 Disabling DER

Like the previous case, a command that turns off the DER is not necessarily

an indicator of an attack, but it is a suspicious event. In most applications,

there will be control functions that can curtail power output from DER as

needed without the need to turn them off via the communications interface.

The shutdown should be viewed as suspicious, and if combined with the shut-

down of many other devices, may warrant a high-priority alert and dropping

any future incoming suspicious commands until the commands are verified

to be legitimate.

4.3 Limitations of DPI

DPI can provide mitigations against specific cyber-physical attacks, but it

does not protect against all attacks. As a rule-based approach, it is limited to

the rules that are defined by a developer. If an adversary sends a command

that does not meet any of the rule-based criteria for an attack, then it will

evade detection. This motivates the need for a comprehensive study on

combinations of modes that could be destabilizing.

This tool in particular is limited by the information available to it. The

tool has access to the proposed command, the local state information, and

the current configuration information of the DER. There is potential for

more generic system information, such as the DER penetration level, to be

programmed in as well. Even though this is sufficient information to make

informed decisions, it is possible that with more information the DPI tool

could detect a wider range of potential attacks.

We described some commands that were deemed “suspicious,” but not

necessarily adversarial. There is subjectivity to deeming commands suspi-

cious, or aggregating the total number of suspicious commands that have

been received by DER. Further investigation will be required to tune cutoffs

or define levels of suspiciousness.
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4.4 Future Development

The DPI tool is currently in early stages of development. There is potential

for this tool to be developed from a simple rule-based tool to something more

state-aware and dynamic.

One potential improvement is to make the tool more state-aware by giving

it access to data collected from different points in the system rather than just

at the PCC. This would allow it to make decisions based on a better under-

standing of the current status and the expected change from the proposed

command.

We discussed one way to make this a distributed DPI tool in the previ-

ous sections. Commands can be monitored for a “suspiciousness” indicator,

and this indicator can be reported back to a central node. If the net sus-

piciousness indicator passes a threshold, an alert can tell endpoints to stop

accepting any commands that may be suspicious. Another way to formulate

this a distributed intelligence tool is to have every command received by an

endpoint checked by a central monitor. This method would incur heavy la-

tency penalties, which may not be tolerable. To counteract this, a heuristic

checking process may be deployed. On “high risk” nodes, perhaps 80% of

commands would be checked by the monitor. On “low risk” nodes, perhaps

only 10% of commands would be checked. This provides some additional

security without compromising too much speed.

To make the decision-making even more robust, the tool would ideally be

able to run a simulation with the changes proposed by the new command

to decide if it is adversarial. Even more robust would be to run simulations

under different potential grid-stress events to detect whether the command is

a delayed attack, which may only come into effect under certain conditions.

An example of this is the malicious Volt-VAR settings. As long as the voltage

is near nominal, the response from Volt-VAR mode will be small, but if

there is a large enough deviation initiated somewhere else in the system, the

malicious Volt-VAR mode behavior will drive the voltage even further from

nominal levels.

Even with real-time simulation capabilities, it is infeasible to run simula-

tions for each new command that is sent. Real-time simulations still take

valuable time from the executing the command, but under most scenarios,

the command will be legitimate and potentially needed. Running long-term
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simulations or simulations under grid-stress events would be even costlier. On

top of that, the computing resources required to run high fidelity simulations

are significant and not likely feasible to deploy on network endpoints.

To take advantage of the benefits of simulations, many representative sce-

narios with many possible commands could be run offline. When a new

command is received in real-time, the inspection tool can pick from this of-

fline database the scenario that the proposed command and current state

conditions most closely align with and look up the result from that simula-

tion. If the simulation is stable, the command is accepted and forwarded to

the DER controller. If the simulation passes some threshold for instability,

the command is dropped and an alert is raised.

4.5 Related Work

The previous section described a deep packet inspection tool for prevention or

early detection of an active attack on the communications interface of a DER.

Engineering controls that consider the power system effects of a command

are not the only measures that can add security.

4.5.1 Protocol Security

Industrial protocols are typically not designed with security in mind. How-

ever, there are security features that can be designed for protocols or added

on top of existing protocols. A detailed analysis of certificates and tokens

used for authentication was performed and is presented in Chapter 6.

Cryptography has been proposed to protect the confidentiality of data.

However, there are strong demands for low latency communications in power

system communication networks, and adding cryptography is known to slow

things down [55]. Work has also been done to address the latency issues and

make cryptographic solutions feasible for large-scale deployment on devices

with low resources [56]. Adding cryptography would also complicate the

deployment of a DPI tool like the one described above. The endpoint monitor

would need to have access to the crytopgraphic keys in order to read the

incoming command and perform the analysis.

Deploying cryptographic solutions presents logistical issues as well. There
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is a strong need in power systems for backwards compatibility as new systems

and technologies are never replaced entirely at the same time, but rather

rolled out over time. The adoption of IEEE-1547 presents a good opportunity

to roll out cryptographic protocols for use with DER since the requirements

of the standard will require changes to newly produced DER communication

interfaces anyway. If it can start somewhere, the adoption of cryptographic

protocols may spread to other parts of power systems. Securing certain

parts of a network does little good if there are ways to circumvent the secure

protocols and use insecure ones, as demonstrated in Chapter 6. However, no

improvements can be made if the work does not start somewhere.

4.5.2 FDI Detection

There has been a lot of work around detection of FDI attacks. Perturbation

analysis is one good way to detect if SCADA data has been compromised

[57, 58, 59, 60]. This work could be extended from defending state estima-

tion to defending against attacks specific to DER. The premise is the same:

The compromised information is used to inform operational decisions, and

the adversary picks the injected data to specifically force the control and

operation in a certain, potentially hazardous direction. The scope would be

smaller compared to the work done on distribution or transmission systems,

and would instead focus on the local network the DER was connected to.

An interesting approach was proposed by Jhala et al. to use probing to de-

tect FDI attacks against systems with high penetrations of DER, but the

approach is not necessarily focused specifically on the compromise of DER

data [61]. A defense technique more specific to DER, namely solar, is iden-

tified by Jafarigiv et al. [62]. This work is specifically in response to FDI

attacks targeting smart meters, but could be extended to a broader category

of attacks.

4.5.3 Network Segmentation

Network segmentation is a way to separate logical subnetworks and prevent

an adversary from being able to access all devices on a network simulta-

neously. This is particularly valuable since one of the big threats to DER
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cybersecurity is that of a simultaneous attack on multiple DER that, in ag-

gregate, has a destabilizing effect on the system. Network segmentation is

proposed as a best practice for cybersecurity of DER by researchers [54].

4.5.4 Anomaly Detection

Most existing work focuses on potential attack vectors and best practices

for proactive cybersecurity, but there are a few papers that discuss attack

detection and mitigation. A tool to flag anomalous smart inverter behavior

has been developed [63]. This tool also proposed a cyberattack detection

mechanism based on anomaly detection using data from geographically sep-

arated DER. This work does not discuss a method for attack prevention. A

similar approach has been used to detect FDI attacks that evade static bad

data detection schemes [64]. A different threat model has also been studied

in which the attacker has control of a photovoltaic system and changes the

output to manipulate voltage. In this work, an anomaly detection system

classifies good and bad behavior despite the normal unpredictable output

of solar generation [65]. Another recent work describes an online unsuper-

vised learning method to detect abnormal communications for photovoltaic

systems [66]. This work uses not message content information, but rather

information from the header as well as parameters like the length of the con-

nection, as features to train the network. This tool may not work well for

attacks that have compromised an engineering workstation and send com-

mands that mimic the type of commands that could be sent during normal

operations.
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CHAPTER 5

POTENTIAL CONSEQUENCES OF A
SUCCESSFUL ATTACK ON STORAGE

DEVICES

In the previous chapters, we showed how the capabilities now required under

IEEE 1547-2018 could be misused in certain combinations to create adverse

power effects on the connected system for any generic DER. Now, without

reference to any particular standard, we discuss a wider range of possible

consequences, but with a focus on grid-scale batteries rather than generic

DER.1 Batteries are chosen for this analysis because of their inherent ability

to charge and discharge active and reactive power. The increased capabilities

gives the adversary a wider range of cyber-physical security scenarios to

consider. Also, unlike solar or wind assets, batteries are dispatchable on

command, subject to the state-of-charge. The variability of wind and solar

is interesting to study for other purposes, but the dispatchable property of

batteries suits them well for security analysis.

The analysis is broken up into categories of impact: Grid consequences,

battery consequences, and economic consequences. The impact to power

stability in a connected grid system is studied for systems with a compromised

battery. Battery degradation and safety hazards are discussed. Finally, we

consider the economic impacts of a cyberattack manipulating a grid-scale

battery.

1The work in this chapter was performed as part of the author’s role as a Graduate
Fellow for Idaho National Laboratory. This work was performed under the auspices of
the U.S. Department of Energy by the Idaho National Laboratory under Contract DE-
AC07-05ID14517. The work was supported by the U.S. Department of Energy’s Grid
Modernization Laboratory Consortium.
The work in this chapter has been submitted for publication to the Energies journal special
issue: “Cyber Physical Power and Energy Systems” [67].
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5.1 Grid Consequences

Any effects of a cyberattack on a grid-scale battery will depend on the con-

figuration and capabilities of the battery and inverter, as well as the config-

uration of the electrical elements around the battery. If the battery is the

primary local source of injecting or absorbing power, any manipulation of

these functions will have a greater effect than if there is a lot of inertia in

the system from other sources. Safety equipment and settings on protective

relays will also affect the outcome of any attack. Relays or breakers that are

programmed to trip after narrow bounds are exceeded will create different

effects than settings that are tolerant of a larger range. One is not neces-

sarily more damaging than the other, but rather the effects depend on the

resilience and the resilience goals of the system. Causing a device to trip

after narrow bounds are exceeded may create more problems by creating a

sudden change in load or generation, or it may stop the battery under attack

from continuing to adversely affect the connected system.

The impacts described below consider the worst case scenarios to demon-

strate the possibilities. However, not all systems will be configured to make

certain attacks feasible, or the feasible impact of any battery output may be

small enough that attacking the storage device may not cause measurable in-

stability in the system. A detailed analysis of DER penetration levels needed

to cause instability under certain attacks is presented in previous work [43].

These scenarios are more likely to occur in isolated microgrids or smaller

systems.

5.1.1 Voltage Instability

Reactive power output is often used to regulate voltage. Absorbing reactive

power can help bring the local voltage back to nominal if the voltage is high,

and conversely, injecting reactive power can help bring the local voltage back

to nominal if the voltage is low. Historically, capacitors and load banks

were used to perform these functions, but since modern battery inverters

can nearly instantaneously inject or absorb high amounts of reactive power,

they are useful tools for supporting local voltage. They can be even more

useful in combined solar-storage systems, since distribution systems with high

solar penetration are known to have high voltage issues during high energy
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generation times of day [68, 69].

A grid overvoltage event can occur if the battery fails to provide reactive

power support when it needs to, or if it is adversarially manipulated to drive

the voltage up. The system may tolerate higher voltages for a period of time,

but if the high voltage persists, the battery will likely trip off.

A grid undervoltage event can similarly occur. In this case, the battery

fails to inject reactive power when it should, or it absorbs reactive power

when it should not, driving the local voltage down. If the system cannot

correct for these effects, the battery may reach tripping thresholds.

Directly manipulating the reactive power output of the battery is the sim-

plest way to create voltage instability. If there is a direct reactive power

output setting, an adversary could turn it off to prevent any reactive power

support, or maliciously command the battery to a reactive power setpoint

that is destabilizing. There may also be various reactive power support

modes. These will be required for IEEE 1547 compliant devices. An adver-

sary can turn off Volt-VAR mode or inject setpoints for the Volt-VAR curve

that amplify voltage deviations rather than mitigate them.

5.1.2 Frequency Instability

Frequency regulation is another service that can be performed by a battery.

Load shedding is the most common way to deal with under-frequency events,

and many researchers have explored the best under-frequency load shedding

(UFLS) schemes [70, 71, 72]. Similarly, generation shedding can be used to

correct over-frequency events [73, 74]. Both of these mitigations come down

to re-balancing the active power for a system. Since grid-scale batteries can

both inject and absorb active power, they are good candidates for mitigating

frequency instability. However, the same capability that makes batteries

good for frequency control gives them the potential to adversely affect the

frequency if they are maliciously manipulated.

If the frequency is high, the battery can absorb active power, which has

the same effect as shedding generation and drives the frequency back down

to nominal levels. However, if this function is disabled or if the battery is

manipulated to inject active power instead of absorbing it, an over-frequency

event can be created or exacerbated. If the local frequency is out of sync
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with the larger system capacity or if the whole system frequency is driven

upward, equipment could be damaged and many sub-systems are likely to

trip. If enough load trips, the over-frequency event will be even more extreme.

Similarly, if the frequency is low, the battery can inject active power, which

has the same effect as shedding load. However, if the battery instead absorbs

power in this situation, that is like adding more load on the system, which

will make the under-frequency event worse. If the event is extreme enough,

various sub-systems may trip.

An adversary could manipulate the frequency by directly changing the ac-

tive power output or by making changes to frequency support modes, if avail-

able. By directly modifying active power output commands, an adversary

could set active power output to maximum injection or absorption, driving

frequency higher or lower respectively. Frequency support modes could be

directly disabled or manipulated to interfere with the correct functionality.

An adversary can modify frequency support bands so that frequency must

deviate more before corrective actions are taken. An adversary can also mod-

ify the frequency-watt curve so that there is a smaller change in active power

output in response to frequency deviations. A more subtle attack would be

to modify charge rates or active power ramp rates to low values so that in

any scenario, the battery is not permitted to change the active power out-

put quickly. The effect of these actions would depend on how the controller

worked, what modes were available, and the robustness of the connected

system.

Typically, a system with many different generation sources has enough

inertia to keep the frequency within a narrow band, particularly if many of

these are traditional spinning sources. However, as penetration of inverter-

based generation sources, including batteries, increases, there is less physical

inertia in the system, and the system may be more susceptible to frequency

deviations. This is true for smaller systems like microgrids as well.

In systems with high DER penetration, frequency regulation is a harder

problem to solve [75]. If the battery does not provide the expected support

in an under-frequency scenario, traditional methods like load shedding must

be applied to prevent the system from collapsing [76]. An adversary could

potentially trigger a load-shedding event by forcing a battery charge rapidly,

absorbing enough active power to drive the frequency down, a scenario that

is possible in a microgrid or other system where the battery represents a large
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enough portion of generation capacity.

5.1.3 Load Shedding

Load shedding was discussed in the previous section, but there are in fact a

few ways in which manipulating the battery output could cause load shed-

ding. The first is to have the battery absorb as much active power as possible.

In this scenario, the battery acts as a large load itself. If this happens at a

time when generation is scarce, perhaps when solar or wind are underper-

forming, it could force other loads to be dropped.

Another scenario where load might be shed is if the battery is set up in

such a way that it is contracted to a utility to provide certain services or a

certain amount of active power injection. In that case, an adversary could

manipulate the commands that tell the battery how much power the utility

demands. If the battery is forced to meet this contract with manipulated

values, it is possible that the battery power would all go to the utility, and

it would not be able to supply local loads.

Theoretically, any of the previous scenarios in this section could also cause

load shedding. If the grid disturbances are severe enough, and if they are

exacerbated by an attack, then protective relays may trip, disconnecting

loads from any power source. In the right scenario, the disconnect of these

loads could further exacerbate an event, causing cascading failures.

5.1.4 Islanding

Many modern inverters have the ability to operate in a grid-forming mode.

In this mode, direct control of active and reactive power output is not avail-

able, but instead, an operator can set a target voltage and target frequency.

An adversary could manipulate these target parameters, or the supporting

parameters, including frequency droop and voltage droop settings.

A successful attack on these parameters could damage equipment that is

only rated for certain voltages. It could prevent the successful formation

of a dynamic scheduled island. It could also interfere with the ability of

the battery to support in black start scenarios. Taking away any of these

functions would greatly reduce the resiliency that is provided by batteries.
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At this time, it is uncommon to have a significant islanded system that

is primarily powered by inverter-based devices. From a risk perspective, the

likelihood of an attack on this configuration is low. However, it is important

to still consider these cases, particularly if these microgrid configurations

support critical operations.

5.2 Battery Consequences

In addition to the effects on the connected system, the effects of a cyberattack

on the battery itself can be studied. There has been less active research in

this area, but valuable insight is gained from studying the potential failure

modes of the battery, and by considering cyberattacks on the batteries of

electric vehicles (EVs), which share much of the same battery technology

with grid-scale batteries.

There are many different chemical makeups of batteries for grid-scale stor-

age, but lithium-ion (Li-ion) is the most common. It was developed in the

1980s, and the first commercial Li-ion battery was released in 1991 [77]. Li-

ion batteries are popular because they can operate at high cell voltages and

they have a low self-discharge rate. They are efficient in that they have a

high power density by volume, and high specific energy and energy density

[77]. These properties make Li-ion batteries well suited for deployment in

electric grids. However, care must be taken to operate the batteries within

their parameters for voltage, temperature, and current to ensure that there is

no damage to the battery cells while charging or discharging. If they are not

operated correctly, cell damage can reduce the lifespan of a battery, which is

costly for electric systems. In the most extreme case, cell damage can lead

to thermal runaway or fire.

5.2.1 Cell Degradation

Batteries will naturally degrade over time, and in fact, Li-ion batteries are

chosen for their energy density, not for their resilience over time. Two main

processes account for cell degradation [78]. First, growth of the solid elec-

trolyte interphase (SEI) layer can cause degradation. The SEI layer grows

as a result of solvent reduction at the anode-electrolyte layer. This process
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consumes lithium ions, which decreases the amount of active lithium ions and

reduces the capacity of the battery. Second, lithium plating can cause degra-

dation by similarly creating a loss in capacity. It can also increase the risk

of internal shorts, which could lead to system failure. The extent of lithium

plating is controlled by the electochemical potential for lithium deposition.

Degradation of batteries is hard to measure, but metrics like the change in

internal resistance can be used to help analyze damage, as discussed by Sri-

pad et al. [78]. The rise in internal resistance is estimated using the increase

in the thickness of the SEI layer. Degradation is affected by variables includ-

ing temperatures, state-of-charge, pack size, and age of the pack. Studies

evaluated by Sripad et al. showed that damage occurs faster at higher ambi-

ent temperatures [78]. However, cyberattacks are more effective on batteries

in lower ambient temperatures because these batteries have thinner SEI lay-

ers to start with. They also found evidence that attacks on fully charged

battery packs would cause more long-term damage.

From a cybersecurity perspective, battery degradation can be induced by

overcharging or overdischarging the battery. An attack that aims to over-

charge the battery causes an increase in the SEI growth rate and an increase

in internal resistance. One study found that an attack that overcharges the

battery by just 0.4 V after full SOC is reached has the potential to shorten

the lifetime of an EV battery to about 200 days [78]. In an extreme attack,

if enough lithium plating occurs, thermal runaway could occur. While this

attack was demonstrated for EVs, not grid-scale batteries, a different attack

path that causes overcharging would have the same effects on the battery. If

an attacker can modify the upper cut-off voltage, the battery will be charged

at a higher voltage than what it is rated for, causing overcharging. This is

not typically something that can be modified through a standard controls

interface, but rather something that would be exploited through firmware

attacks or supply chain attacks.

Conversely, if the lower voltage cut-off voltage is decreased, the battery

pack can be overdischarged. When overdischarge occurs, the anode potential

increases abnormally and the SEI layer decomposes. This is followed by the

dissolution of copper ions from current collectors, opening the possibility of

internal shorts [79, 80, 81]. Copper dissolution can begin within hours but

depends on the amount of power drawn during overdischarge. Eventually,

metallic copper is deposited [82]. Another risk to be aware of is that Li-ion
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batteries connected in series are more likely to be overdischarged [82]. The

consequences of an overdischarge could range from internal shorts to thermal

and safety issues.

Researchers have shown that battery-draining cyberattacks on EVs are

possible, but these exploits relied on attack paths specific to the car applica-

tion, and would not transfer directly to power grid applications.

One attack drains the EV battery by using the wake-up function of a

parked EV, then issuing commands to turn on lights, air conditioner, wipers,

and more to drain the battery [83]. The researchers took advantage of the fact

that signals and messages, particularly the wake-up message, were designed

to be simple in order to conserve power. The simplicity of the messages

made them easier to spoof. For a grid application, an adversary would have

to find a legitimate way to communicate with the battery and command it

to discharge power. In addition to protocol security and other measures, the

attack would be more difficult in this scenario since the grid is always on,

and there will always be sensors monitoring the battery output. It is more

likely that this sort of attack would be discovered before severe damage was

done.

In another study, researchers investigated the entire overdischarge process

by charging a Li-ion cell [82]. They observed a significant voltage plateau at

approximately -12% SOC, and an internal short was detected when passing

this voltage step. This suggests that an overdischarge of just -12% SOC is

needed to cause short circuiting and permanent damage. The researchers

also observed a sharp decrease in resistance at the beginning of the internal

short circuit. After recharging samples that experienced an internal short,

the cells displayed significant self-discharge. Cells that were overdischarged

to a SOC of less than -14.5% could not be fully recharged to their nominal

value.

5.2.2 Thermal runaway

In the most extreme case, overcharging can force cell temperature above a

critical temperature, above which the increase in temperature is irreversible.

This is called thermal runaway. Sometimes smoke may be seen exiting the

battery pack, which is gases emitted from the degradation reactions. These
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gases may cause cell ignition and combustion, starting a battery fire [84].

There is some heat generation inside the battery caused by normal charging

and discharging, but if undesirable side reactions occur, this heat can rise to

unsafe levels.

A fire study by the National Fire Protection Association on a commercial-

scale Li-ion battery found that thermal runaway could be induced by high

temperatures but did not find evidence of explosions [85]. The thermal run-

away was limited to battery cells that were in closest proximity to a burner

that was installed inside the battery; other cells farther from this burner

were not severely affected. This is good evidence that even if a cyberattack

could cause overcharging, the safety hazards would be limited. This report

also studied reported cases of ESS fires. They found very few cases to study,

which is again encouraging from a safety hazards perspective.

5.3 Economic Consequences

A final category of impact to consider is that of economic consequences.

An adversary could manipulate battery output within all power and safety

limits, but still affect the operation of the grid and the economic impact on

asset owners. The effects for two categories of asset owners are presented.

The first is utility owned bulk-battery assets. The second is consumer-owned

battery assets.

5.3.1 Utility-owned Assets

At the utility scale, the manipulation of services required to support indepen-

dent system operators (ISO) or regional transmission organizations (RTO)

can have wide-reaching impacts. Both organizations are responsible for the

operation of transmission systems. They oversee both energy and ancil-

lary service markets in the regions they govern. The following list describes

services that a battery can provide to a utility and how an adversary can

manipulate those services.

• Frequency Regulation: A battery can benefit a utility or system

operator by providing frequency regulation. To block this benefit, an
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adversary can turn off frequency support if that is a built-in mode,

or make reactive power ramp rates very slow so that any frequency

response is not effective at the necessary time scale.

• Voltage Support: To prevent a utility or system operator from real-

izing the benefits of voltages support, the adversary can turn off any

reactive power modes, directly manipulate voltage as discussed earlier,

or make the active power ramp rate very slow.

• Spinning Reserves: In order to meet sudden changes in demand,

there is a requirement of a certain amount of “spinning reserves” that

are ready to deliver power immediately. Using batteries at the right

time, particularly in times of peak load, can reduce the demand for

other sources, allowing cheaper sources to be used as spinning reserve

and preventing more expensive peaker plants from needing to start up.

Alternatively, since batteries can change their output from zero to full

injection almost immediately, the batteries themselves can be used as

spinning reserves, rather than for demand response. An adversary can

prevent batteries from being used to help shave peak load or act as

reserves by draining the battery and keeping it at a minimal SOC.

• Black Start: Recent research has discussed using distributed re-

sources, including batteries, to perform black starts. This is a bottom-

up approach rather than the traditional approach of starting big base

load plants first and working outward. An attacker can prevent batter-

ies from being useful for black start by forcing the battery to maintain

a low SOC.

• Distribution and Transmission Deferral: Installing batteries

can allow utilities to delay, reduce the size of, or completely avoid

investments and upgrades to the distribution or transmission systems,

which would otherwise be required to meet projected load growth in

certain areas of the system. An attacker can manipulate batteries to

make them appear unreliable, or send commands so they are used in

a way that degrades their lifetime faster. If this occurs, it may not

be economically advantageous for utilities to delay the upgrades to

systems.
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• Transmission Congestion Relief: During peak demand times of

the day, one of the challenges is to get power from where it is pro-

duced to where it is consumed. ISOs charge utilities higher rates to use

congested transmission corridors during these times of day. Installing

battery capacity downstream of these corridors can serve more local

load and reduce congestion on the transmission lines. If an attacker

can force the battery to maintain a low SOC or reach a low SOC at the

peak demand times of day, the utility may incur increased costs from

transporting more power on the transmission corridor.

5.3.2 Consumer-owned assets

The electricity market is complex, and there are many ways that consumers

can receive discounts or benefits from installing DER and also ways that

they can be penalized for mismanagement of the DER. The following are

properties that can benefit consumers when they have batteries installed

and descriptions of how attackers can take that benefit away.

• Time-of-Use Bill Management: In some regions, customers may

be billed different rates for electricity that is consumed at different times

of the day. Batteries can reduce the customer’s bill by charging during

low-cost times of the day and discharging to serving local load at high-

cost times of the day. If the adversary prevents the battery from being

used for economic efficiency, the customer’s savings will decrease. The

adversary could even increase a customer’s bill by forcing the battery

to charge during peak cost times of day.

• Increased DER Self-Consumption: In some regions, such as

Hawaii, there are regulations prohibiting or limiting power exported

form a residential home with DER (non-export rules) [86, 87]. In these

locations, the primary generation source, such as wind or solar, is typ-

ically installed with a battery so that when renewable generation ex-

ceeds the power consumed by the residence, the battery can be charged

rather than curtailing the generation output. The battery can later be

discharged when renewable generation is low. In the worst case, an

attack that prevents the battery from charging when renewable gener-

ation is high may cause the residence to violate non-export rules. Even
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if the generation is curtailed, the customer will have to pay for utility

electricity later that could have otherwise come from the battery.

• Demand Charge Reduction: Utilities charge customers for the

total amount of energy (in kilowatt-hours [kWh]) that they use in each

billing period. However, for customers that have peak power loads

above a certain threshold, utilities will often include a “demand charge”

in their billing structure, which is proportional to the peak power de-

mand of the customer over the billing period. Batteries can be dis-

charged at periods of peak load to offset the power imported from the

utility and reduce the demand change. This also requires that batter-

ies be charged during lower load periods. If the adversary prevents the

battery from performing this function, the cost savings of having the

battery will be forfeited.

• Backup Power: Batteries with grid-forming capabilities can provide

backup power if the main electric grid is unavailable. To take advantage

of this value, the battery needs to have sufficient stored energy when

it is needed for backup. If the adversary forces the battery to stay at a

low SOC, the value of having the battery as backup is eliminated. This

translates into actual costs when considering the value of load lost or

productivity lost.
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CHAPTER 6

CASE STUDY: GRID-SCALE BATTERY

While many proposals address cyber-physical risks associated with DER, and

a few even discuss batteries specifically, this case study is the first to perform

a comprehensive analysis of the cyber-physical security of grid-scale batteries.

In this study, experiments examine the security features that can be added to

communications to better protect controls against adversarial manipulation;

furthermore, we demonstrate a selection of the physical consequences that

can occur if the adversary is successfully able to manipulate the control

channels.1

6.1 Threat Model

In this case study, the threat model assumes that the adversary has man-in-

the-middle (MitM) capabilities and the intention is to spoof commands from

the AEPS to the battery controller. The attack path prior to this point is not

specified. This malicious command attack has the potential to cause most

of the Grid Consequence and Economic Consequence outcomes described in

Sections 5.1 and 5.3. Battery hardware consequences are still of interest, but

since this area has not been well studied and would appear to require more

advanced adversarial capabilities, we do not focus on that in this case study.

For the communications study, the threat model assumes that the attacker

is able to spoof syntactically correct messages that impersonate the AEPS

operator and are sent to the battery controller. We examine success of the

1The work in this chapter was performed as part of the author’s role as a Graduate
Fellow for Idaho National Laboratory. This work was performed under the auspices of
the U.S. Department of Energy by the Idaho National Laboratory under Contract DE-
AC07-05ID14517. The work was supported by the U.S. Department of Energy’s Grid
Modernization Laboratory Consortium.
The work in this chapter has been submitted for publication to the Energies journal special
issue: “Cyber Physical Power and Energy Systems” [67].
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attack if different authentication and integrity security features are used.

For the cyber-physical outcomes study, the threat model assumes that

the attacker is able to execute a successful MitM attack, or has performed

reconnaissance, gathered access credentials, and is able to use an engineering

workstation by pretending to be a legitimate user.

FDI attacks are out-of-scope for this case study; only command injections

are considered. FDI attacks are a valid concern to be addressed, but they

are more complex, requiring more advanced capabilities, which reduces the

likelihood that they will occur. Also out-of-scope are insider threats, supply

chain threats, or side-channel threats. An insider threat makes the communi-

cations study irrelevant as the insider would have access to proper credentials.

The assumption is that the battery hardware can be trusted and that the

controller firmware operates as intended.

6.2 Methods

A large grid-scale battery was configured to work in both on-grid and off-grid

modes. It was also connected to a load bank and a solar emulator.

We evaluate two aspects of the cyberattack. First, we evaluate the secu-

rity properties that can be added to communications to make it harder for

an adversary to interface with a controller. Second, with these security fea-

tures disabled, we examine the physical and electrical effects of potentially

malicious commands.

6.2.1 Communications Security

Many grid-scale batteries are designed to function with multiple protocols

in order to maximize compatibility. Most industrial protocols used in power

systems, such as Modbus, DNP3, or versions of CAN, do not provide secu-

rity features like authentication or encryption. Security was not a concern

when these protocols were designed, but even as recognition of the need for

industrial security grows, they continue to be deployed widely in practice

for convenience and to ensure backwards compatibility with other devices.

The transition to secure communications cannot be made unless security fea-

tures are made available, and eventually required, but in the meantime some
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devices are equipped to communicate both securely and insecurely.

We test whether the battery controller can respond simultaneously to re-

quests sent via different protocols. We request data for logging purposes via

a authenticated protocol, and test the response to simultaneous commands

sent that impersonate the AEPS controller but communicate via an unse-

cured protocol. We verify if the unauthenticated commands are accepted by

the controller by monitoring the data collected via the secure protocol. This

test is not meant to examine the security of one protocol over the other, but

rather to demonstrate that even when secure communications are available,

there may be ways for an adversary to bypass the security without learning

necessary credentials.

Next, we examine two individual security features that can be added

to industrial protocols: token authentication and certificate authentication.

When the AEPS uses a protocol with tokens, the server, the battery con-

troller, is authorized to give access (read or write) to certain resources based

on the token. For the client to verify the authenticity of the server, certifi-

cates are used. A client verifies a server according to its certificate, and the

server identifies the client according to the client certificate, which is known

as mutual-authentication. While both of these are authentication features,

the distinction is that tokens grant a level of access to certain resources so

that the server can trust the client, whereas certificates verify identities, typ-

ically so that the client can trust the server.

6.2.2 Controller Interface Security

If we assume that the adversary can send a message that is accepted by the

battery controller, we want to know what the cyber-physical impact will be,

specifically how the adversary can misuse functionality available through the

controller to cause physical and measurable effects on the connected power

system. We also examine what can be done to mitigate the effects of adver-

sarial commands. In this case study, we explore the misuse of two common

modes for battery controls — active or reactive power output setpoints and

Volt-VAR mode setpoints — and we show how engineering controls can pro-

tect against the most damaging effects.

The active and reactive power setpoints attack tests the ability of an ad-
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versary to directly modify the active and reactive power output of a battery.

In addition to general manipulation of the output, we test whether an adver-

sary can send commands that are outside of battery limits or documented

capacity.

The Volt-VAR setpoints attack tests the ability of an adversary to modify

the points that define a Volt-VAR support curve. Typically, when this mode

is enabled, the curve defines a reactive power output in response to current

local voltage. When voltage is low, the battery should inject reactive power.

When voltage is high, the battery should absorb reactive power. We test

both normal and abnormal Volt-VAR setpoints and measure the effects on

local voltage.

For these cyber-physical attacks, we carefully monitor the self-reported sta-

tus, the alert logs, and the actual behavior of the device. We compare device-

reported outputs with measurements collected independently on a separate

power meter. The purpose of the monitoring is to determine the severity of

the attack and examine the data for indicators that may alert an operator

to an attack in progress.

6.2.3 Experimental Setup

The programs to interact with the controller were custom developed in Python

for this project. The controller interface for the battery has the ability to

communicate via an authenticated protocol and an unauthenticated protocol.

We developed an authenticated data logging tool, an authenticated controls

tool, and an unauthenticated controls tool.2 The authenticated data logger

and controls program recorded data and control actions to common SQL

databases. Requests sent via the unauthenticated protocol were manually

logged.

The data logger requested different information at varying intervals in

accordance with how often that data was expected to change. Power output

data was polled at a frequency of 10 Hz. System status data was polled

at a frequency of 1 Hz. Mode status, which included configuration data

and was not expected to change often, was polled every 5 minutes. General

2The exact protocols and devices used are redacted to comply with the Idaho National
Laboratory’s export policy and comply with non-disclosure agreements in place about
proprietary material.
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system information was logged only at the start of every trial. The data was

optionally logged to either an SQLite database, a PostgreSQL database, or

both.

The authenticated controls program allowed the user to send commands

that changed settings on the controller. Small changes to the program allowed

us to turn the different security features, namely tokens and certificates, on

and off. It operated via a command line interface. The unauthenticated

controls program also operated via a command line interface. The purpose

of this program was to test the controller’s response to different protocols

and to simultaneous commands via different protocols.

For our tests, a single grid-scale battery was operated in grid-following

mode. It was connected directly to building power in the lab at 480 V. The

building power infrastructure had the ability to act as both a source and

a sink, permitting the battery to operate in both charging and discharging

modes. A power meter was in place to independently monitor the battery

output. The system setup is detailed in Figure 6.1.

Figure 6.1: Grid-following setup for cyber-physical defense study.

6.3 Results

The tests were conducted with two separate battery and controller units to

verify results.
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6.3.1 Communications Security

Simultaneous Communications

As stated previously, the controller had the ability to communicate via two

separate protocols. We simulated a scenario where the operator was using

the secure and authenticated protocol to send commands and log data. An

adversary with access to the network, but not to the credentials for the au-

thenticated communications, injected commands using the unauthenticated

protocol.

Figure 6.2: The real power outputs follow the adversary’s commands even
while data is being requested through the authenticated interface [67].

The commands sent by the adversary were accepted even while the au-

thenticated data logger was also being used. The adversary sent commands

to change the real power output and the battery responded by following the

commands. The same was true for constant reactive power commands. The

adversary was also able to send commands turning the constant real power

output on and off. This shows that the controller can respond to two protocol
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types simultaneously, switching rapidly back and forth between recognizing

one or the other as the command source. Notably, eight total events appear

in the power data logged, as seen in Figure 6.2, but only five events corre-

sponding to commands sent via authenticated channels are seen by the event

logger, as seen in Table 6.1.

Table 6.1: Event log captured via authenticated interface while adversarial
unauthenticated commands were sent [67]. Indices correspond with
authenticated controller events labeled in Figure 6.2.

Index Time Mode Message
0 19:34:05.055 real power Submitting: {”power”: -5000}
0 19:34:05.133 real power Changes accepted
1 19:35:47.070 real power Submitting: {”power”: -5000}
1 19:35:47.117 real power Changes accepted
2 19:36:43.934 real power Submitting: { ”power”: -5000}
2 19:36:44.023 real power Changes accepted
3 19:40:03.180 real power Submitting: {”power”: -5000}
3 19:40:03.243 real power Changes accepted
4 19:44:28.617 real power Submitting: { ”mode”: ”off”}
4 19:44:28.726 real power Changes accepted

The adversarial changes can be easily detected in the power data recorded

by the data logger, but the ability of an attacker to turn on and off the

constant real and reactive power output is still significant. In an operational

scenario, it might be difficult to quickly determine why the power output

changed rapidly. The best way to diagnose this would be to monitor the pa-

rameter that states what command protocol the battery is currently following

as a command source, but this could quickly be overwritten by the authen-

ticated protocol if there was frequent communication between the battery

controller and the operator.

It is worth noting that constant power output modes are only relevant if

the battery is operating in a grid-following constant output mode. These

commands would not be relevant if the battery was instead operating to

maintain a certain SOC, for example. However, it is still noteworthy that

simply using a different protocol can circumvent the protections afforded by

the certificates and tokens required for the authenticated protocol.

To prevent this attack, there would need to be a method to control what

protocols are allowed to interact with the controller, even if the controller

has the ability to interact with many. It is theoretically possible to disable
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the unauthenticated protocol by default and only allow it to be used if the

owner specifically requests it and enables access. Otherwise, the authenti-

cated protocol must be used. This type of requirement is uncommon due to

the prevalent use of insecure protocols in power systems, but it may be nec-

essary in the future. Another simple way to do this would be to have all the

incoming traffic pass through a firewall that only allows packets through if

they are a type that the operator approves for the destination of the battery

controller.

The danger of having both protocols enabled is that it provides a false

sense of security. Operators may believe that they are protected from com-

mand spoofing since they are using secure communication protocols without

realizing that a different, insecure protocol can be used simultaneously by an

adversary.

Protocol Security Features

The addition of any security features is an improvement on the traditional

insecure industrial protocols used in power grid and grid-scale battery appli-

cations, as long as it does not lull the user into a false sense of security. In

this test, the focus is on evaluating the level of additional security that was

provided by certificates and tokens. First, we ensured that both data reads

and data writes worked as expected when both tokens and certificates were

implemented correctly in the authenticated controls interface.

Tokens are intended to ensure that a client can only access resources for

which they are approved. We test their functionality by using incorrect

tokens and by excluding them from messages. We changed a single bit of the

token and attempted to send both read and write requests. These requests

were denied. The controller returned error messages, indicating that valid

tokens must be used.

Next, we attempted to send both read and write requests with no token in-

cluded. Write requests were denied and an error message returned. However,

read requests were successful without the token. This suggests tokens can

protect against adversarial command-spoofing attacks, assuming the adver-

sary does not have access to the token. Although the read requests without

the token were successful, it is unlikely that the information they would have

access to would give them much more information about the system than
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what they already knew if they were in a position to intercept the messages.

We reintroduced the correct token and ensured everything was working prop-

erly before proceeding to the next test.

Certificates are intended to verify identities. As in the previous test, we

examined the response of the controller to incorrect and to missing certifi-

cates. First, we selected the wrong certificate to send both read and write

requests. If the session had already been started using the correct certificate,

both the read and write requests were successful. However, if the session was

just re-starting after a period of inactivity, both read and write requests were

rejected. This is expected behavior for certificates. Certificates are typically

used to establish trust at the beginning of a session, and often to exchange

keys so that future communication can be encrypted. It is unclear how long

sessions last, and this will likely be different for different manufacturers. If

encryption is not used, the risk of session hijacking needs to be accounted

for. We did not have the ability to parse the firmware and discover the exact

mechanism for verification, but more security can be provided if sessions are

limited to short durations. This experiment showed that certificates offer

protections against unauthorized read and write requests. Operators should

be aware of the threat of session-hijacking. If they expect certificates to pro-

vide protections, they should ensure that the system is correctly configured

to provide them those protections.

We also tested the controller response when no certificate is present. Both

read and write requests were denied, and an error was returned. This im-

plies that using a protocol where certificates are required adds strong protec-

tions. However, this feature could still be evaded. Although certificates were

checked by default, there was a way to configure the packets such that the

certificates were not checked by the receiver. When this was done, both read

and write requests were successful. When this was done, there was a warn-

ing raised informing the user that an unverified request was being made and

that adding certificate verification was strongly recommended. This warn-

ing would not deter an adversary, but would only be a good reminder for

a legitimate user who had unintentionally misconfigured their control pro-

gram. These results essentially show that the client (command sender) was

not verifying the identity of the server (controller). While in theory this does

not mean much since we consider the attacker as the sender, if certificates

were provided it could offer one extra challenge for attackers before they can
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execute an attack.

Tokens and certificates both add security to communications interfaces,

helping ensure that unauthorized users cannot access live data sent from the

controller or send malicious commands to the controller. Tokens were pow-

erful protections against unauthorized write requests. Certificates, when re-

quired for each request, were found to protect against unauthorized read and

write requests. We also note that using multiple security features together,

i.e. requiring both tokens and certificates, adds layers of security, making it

more difficult to spoof commands without first stealing credentials.

It should be noted that although we found ways to evade some of the secu-

rity features provided by the authenticated protocol, this protocol still offered

better security than the unauthenticated protocol. It is still recommended

to use and to require authenticated protocols if they are available as they are

an improvement on traditional industrial protocols, as long as they do not

lull the operator into a false sense of security. System operators should take

care, though, to ensure that they are implemented correctly and that they

are getting the full security protections they expect from the features of the

more advanced protocols.

6.3.2 Interface Security

In this section, we examine the cyber-physical impacts of adversarial manip-

ulation of the controller interface. This threat model is valid if the controller

accepts the unauthenticated protocol from a source that appears to be valid,

or if the real command source (i.e. control center) has been compromised.

We assume that it is possible for an adversary to inject spoofed commands

to the controller.

Real and Reactive Power Setpoints

As we demonstrated in Section 6.3.1, it is possible for an adversary to use

an unauthenticated protocol to send commands changing the constant active

and reactive power output while the operator’s secure data logger is running

simultaneously. When the adversarial commands are sent they are not logged

the same way they would be if the operator’s control interface had been used,

but this does not mean they are totally hidden. The active and reactive
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outputs can be monitored via the active and reactive setpoints parameters,

the battery controller output logs, or an external meter. Even if the battery’s

data could be compromised, the external meter would still show the true

output.

We found that the controller did not enforce the documented limits on the

real and reactive power outputs. It would allow the setpoints to be chosen as

an arbitrarily high value for either injection or absorption. However, physical

limits still prevented the battery from entering any unsafe conditions. For

example, if the battery was commanded to discharge at a rate beyond its

hardware capacity, it would only discharge up to that capacity, even though

the controller still reported that the setpoint was at the invalid requested

value.

An example of this behavior is shown in Figure 6.3. An adversarial com-

mand set the active power setpoint to 1010 kW. The actual active power

output reached a maximum of 111.5 kW, which is the documented maxi-

mum power output of the battery.

No direct safety limits were violated since the battery limited its output

to the true maximum power output. However, the software did not behave

as expected, and there could still be some risks here.

Volt-VAR Setpoints

A common way to regulate voltage using reactive power is Volt-VAR mode.

Reactive power should be injected to increase the local voltage, and reactive

power should be absorbed to decrease the local voltage. If there are no lim-

its enforced on the Volt-VAR curve, which designates the amount of reactive

power injection or absorption based on current voltage measurements, an ad-

versary can designate an arbitrary curve that may have destabilizing effects.

The potential impact of adversarial Volt-VAR curves is discussed in [54].

Figure 6.4 shows the results of experiments with the Volt-VAR curve.

Nominal voltage is 277.7 V or 0.977 p.u.. Region V shows the voltage when

no reactive support is provided, approximately 271 V. In Region I, a con-

stant reactive power injection of 60 kVAR is added to mitigate the voltage

depression. This brings the voltage up to approximately 275 V. This is an

improvement, but it is not a dynamic response to the local voltage. In Re-

gions II, III, and IV, the Volt-VAR mode is enabled. Region IV shows the

59



Figure 6.3: The active power output was set to 1010 kW, far above the
111.5 kW maximum power output [67].

effects of a standard Volt-VAR curve. Reactive power is injected, and the

voltage is increased to approximately 275 V, which is 0.99 p.u. and indicates

a good response.

Regions II and III show varying levels of adversarial input. In Region II, an

adversary sends commands for an inverse Volt-VAR curve, absorbing power

instead of injecting power when the voltage is low. This adversarial setting

is configured to inject or absorb a maximum of 20% available reactive power.

The voltage is depressed below the no-input level, down to approximately 270

V. Region III shows a more severe attack. The setup is the same, but the

adversarial setpoints are configured to inject or absorb a maximum of 40%
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Figure 6.4: The adverse effects of a malicious Volt-VAR curve are shown
[67].

of available reactive power. The voltage is depressed down to approximately

268 V, or 0.96 p.u.. This is a low enough value that safety devices might

trip if the voltage remained at this level for an extended period of time. The

adversarial conditions move the system farther away from the desired state.

More extreme attacks are possible but not demonstrated here.

6.4 Conclusions for the Case Study

We performed a comprehensive cyber-physical security analysis of a con-

nected battery system. From the networking perspective, the main takeaway

is that authentication features like tokens and certificates do provide security

benefits, event when the messages are not encrypted. If possible, authenti-

cated protocols should be the default, and unauthenticated protocols should

be disabled except where absolutely necessary.

We demonstrated command injections that resulted in a sample of the

grid consequences that were discussed in Section 5.1. This experiment took
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place with real hardware and real communications networks. Engineering

controls can help mitigate the effects of malicious commands, but overall

it is desirable to block the commands before they are accepted, which is

discussed in Chapter 4.

6.5 Related Work

Most existing work that addresses the topic of cybersecurity for DER refers

to the increased functionalities as one of the key features that adversaries

may exploit. Different attacks that interfere with the operation of DER are

shown to be feasible through hardware-in-the-loop (HIL) simulations [88].

Similar work adds a level of realism by including physical devices at different

remote locations as part of their HIL simulations and studying the impact

of attacks and the influence of attacks carried out at different time scales

[89]. HIL simulations are also used to explore different attack paths by Duan

et al. [90], but these mostly focus on attacks that result in the DER being

turned off or disconnected, which is still an effective way of preventing the

DER services from being used. Soyoye and Stefferud [91] assess similar risks,

specifically those of functions specifically called out in California’s Rule 21

Interoperability requirements, through a power electronics lens.
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CHAPTER 7

CONCLUSION

This thesis has discussed the cybersecurity implications of integrating large

amounts of DER into the grid. With DER penetration on the rise, a trend

which is only expected to grow, there are rising concerns about the security

of having so many distributed resources on the grid. In particular, the devel-

oping need for advanced control function and the communications to support

these functions has broadened the attack surface for an adversary, especially

compared to the traditional generation model.

A cyber-physical security analysis of the recently updated IEEE 1547 stan-

dard in the first part of the thesis reveals the potential for adversarial combi-

nations of modes and setpoints to create harmful and potentially destabilizing

effects on the connected system. In the worst case, a simultaneous attack on

multiple DER can cause them all to trip off simultaneously. This is partic-

ularly concerning for systems with high DER penetration. To mitigate the

likelihood for these attacks to be successful, the author developed a DPI tool

to detect incoming commands that may be malicious. This tool takes a rule-

based approach, and successfully alerts on the most threatening commands

and sends warnings for suspicious commands.

The second part of the thesis focuses specifically on grid-scale storage de-

vices due to their inherent ability to inject and absorb power. This built-in

range of functionality and direct dispatchability makes batteries the most in-

teresting inverter-based DER to study from a security perspective. A range

of potential consequences of a cyberattack on a battery are explored accord-

ing to the categories of grid stability impacts, battery hardware impacts, and

economic impacts. Potential attacks that could result in these consequences

are described. Next, a case study is performed with a real grid-scale stor-

age device and networks. This adds a level of realism not achieved by most

existing work. The cybersecurity properties of the battery are investigated,

both from a network security perspective and a cyber-physical impacts per-
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spective. Best practices and useful security features are highlighted.

Within the last ten years, DER penetration and capabilities have grown

so much that there is need for cybersecurity solutions specific to DER. This

thesis explores the considerations from a cyber-physical perspective, taking

into account networks, communications, and attacker capabilities, as well

as the physical impacts of feasible attacks. More work is needed to develop

robust mitigation tools and generate awareness of best practices for managing

DER, but this thesis serves as a good starting point for anyone who wishes

to understand the threats and impacts.
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